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Abstract

Variational adjoint assimilation of time series observations is used to estimate the optimal parameters of a nitrogen-budget,
Ž .upper ocean, mixed-layer ecosystem model. Observations collected at the Bermuda Atlantic Time-Series Study BATS site

are taken as an example of a time series. A twin experiment using simulated data of the same type and frequency as the
BATS observations first demonstrates the adequacy of the observations to estimate the model parameters and model the
ecosystem annual cycle. This experiment further shows that some of the model parameters cannot be estimated indepen-
dently. This conclusion leads to a simplification of the model and a redefinition of its parameters. Based upon the success of
the twin experiment to estimate all model parameters, an attempt to assimilate actual observations from BATS was
undertaken. The assimilation of real data leads to the conclusion that, even though the frequency and type of observations is
adequate to estimate the model parameters, the considered model is not appropriate for the annual cycle of the BATS
ecosystem. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Physical–biological models of various levels of
sophistication have recently been developed for dif-
ferent regions of the ocean. The biological model
was configured first as a compartmental ecosystem

Žmodel in an upper ocean mixed-layer e.g. Fasham et
.al., 1990 . This class of ecosystem models has then

been coupled to one-dimensional physical models
ŽMcGillicuddy et al., 1995a; Prunet et al., 1996a,b;

) Ž .Corresponding author. Tel.: q1 541 737-3227; Fax: q1
Ž .541 737-2064; E-mail: spitz@oce.orst.edu

.Oguz et al., 1996 , and embedded into three-dimen-
Žsional circulation models Fasham et al., 1993;

Sarmiento et al., 1993; McGillicuddy et al., 1995b;
.Moisan et al., 1996 . The main difficulty with these

models is obtaining an estimate of the parameters.
These parameters, such as zooplankton grazing, spe-
cific growth and mortality rates, are often poorly
measured or poorly known. Typically, these parame-
ters are individually and non-systematically adjusted
until the model results ‘fit’ the observations. Such a
subjective technique for ‘fitting’ the model parame-
ters to the observations quickly becomes an arduous
task, even with an ecosystem model that has few

Ž .coefficients. As Fasham et al. 1990 pointed out in
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their modeling study, more than 200 individual model
runs were required in order to obtain a set of model
parameters that led to results which compared well
to the observations.
A systematic and non-subjective technique of ad-

justing the model parameters consists of using obser-
vations in conjunction with a data assimilation tech-

Žnique such as the simulated annealing Armstrong et
.al., 1995; Matear, 1995 or variational adjoint method

Ž .Lawson et al., 1995, 1996 . Data assimilation has
been widely implemented in meteorological and

Žocean circulation studies Ghil and Malanotte-Riz-
.zoli, 1991; Malanotte-Rizzoli, 1996 . More recently,

data assimilation has been extended to coupled phys-
Ž .ical–biological models. Matear 1995 used a simu-

lated annealing technique with data from Ocean
Ž .Weather Station OWS Papa to estimate the parame-

ters in three different biological models. Results
from this work demonstrated that non-independent
parameters within a model cannot be separately de-
termined, but can be determined as combinations of
each other, such as sums, products or fractions.

Ž .Prunet et al. 1996a applied a simple variational
data assimilation method to calibrate a biological
model for OWS Papa. They found that only linear
combinations of the ecosystem model parameters can
be adjusted, their values depending upon their a

Ž .priori values. Fasham and Evans 1995 used a non-
linear optimization technique and a seven-component
ecosystem model in an upper ocean mixed-layer to
fit the observations at the US Joint Global Ocean

Ž .Flux Study JGOFS station at 478N 208W. They
could not reach a solution which simultaneously
gave a good fit to the primary production and the
zooplankton observations and concluded that the
mixed-layer nitrogen flows were not adequately
modeled. Data assimilation using a variational ad-
joint method has also been applied to a five-compo-
nent, time-dependent, ecosystem model to estimate
population growth and mortality rates, amplitudes of

Žforcing events and initial conditions Lawson et al.,
.1996 . Using identical twin experiments and sam-

pling strategies corresponding to those of the US
JGOFS experiments at the Bermuda Atlantic Time-

Ž .Series BATS and the Hawaii Ocean Time series
Ž . Ž .HOT stations, Lawson et al. 1996 investigated the
effect of changes in data type and distribution on the
ability to recover model parameters.

The main focus of this study is to assess the
feasibility of using a data assimilation technique with
sparse time series observations such as from BATS
to estimate the poorly known parameters for the
annual cycle of a nitrogen budget model in the upper
ocean mixed-layer. In order to achieve this, two
groups of data assimilation experiments were carried
out. First, twin experiments using model-generated
observations were run to determine if the frequency
at which data are collected at BATS is sufficient to
estimate all the model parameters. Second, data as-

Ž .similation of the BATS data 1988–1993 was at-
tempted. The pelagic ecosystem model for this study

Ž .is based upon the Fasham et al. 1990 model that
was previously subjectively calibrated using data
from Hydrostation S.
The data assimilation technique, ecosystem model,

and definition of the cost function and data availabil-
ity are presented in Section 2. The results of the twin
experiment and the assimilation of the BATS obser-
vations are presented in Sections 3 and 4, respec-
tively. A summary of the results is given in
Section 5.

2. Determination of the model parameters

2.1. Methodology

During the past decade, the variational adjoint
method has been largely used in meteorology and
oceanography to estimate initial and boundary condi-
tions. It has since been used to estimate parameters

Žin circulation models Smedstad and O’Brien, 1991;
. ŽSpitz, 1995 , and an ecosystem model Lawson et

.al., 1995, 1996 . Two advantages of this technique
are that it can be applied to both linear and non-lin-
ear models, and it can be implemented in a straight-
forward manner. Since the technique has been largely
discussed in the literature, we will limit ourselves to
a brief overview of the technique.
The variational adjoint method determines an op-

timal solution by minimizing an objective function,
the cost function, which measures the difference
between the model solution and the available obser-
vations. Most minimization algorithms require the
computation of the gradient of the cost function with
respect to the control variables, e.g. model parame-
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ters. The data assimilative model consists of three
components: the forward ecosystem model, the back-
ward model or adjoint model, and an optimization

Ž .procedure Fig. 1 . The three components of the
assimilative model are used in an iterative procedure
which leads to the determination of the control vari-
ables giving the best fit to the data and can be
described as follows. The direct model is run with an
initial guess of the control variables. The model
output and data are then used to compute the value
of the cost function. Thereafter, the adjoint of the
model, run backward in time, gives the gradient of
the cost function with respect to the control vari-
ables, which is then used in the optimization proce-
dure to compute the search direction towards the
minimum and the optimal step size in that direction.
New values of the control variables are then esti-
mated, and the model is rerun. This procedure is
applied until a preset convergence criterion is satis-

Fig. 1. Schematic of the steps involved in the data assimilation
scheme. The solid lines indicate the main path taken during the
procedure.

5 5fied, e.g. JFe andror = J Fe , where e de-1 2
5 5notes a small value, J is the cost function and = J

is the norm of the gradient of the cost function with
respect to the control variables. In practice, to assure
that the cost function has reached a global minimum
and not a local minimum, the procedure is repeated
with different first guesses of the control variables.
The global minimum is reached if all the runs con-
verge towards the same value of the cost function
and the same control variables.
While the adjoint method is a powerful tool for

obtaining the gradient of the cost function with
respect to the parameters of the model, the most
difficult aspect of this technique is the development
of the adjoint model code. One approach consists of
deriving the continuous adjoint equations followed

Ž .by their discretization Smedstad and O’Brien, 1991 .
Another approach is to derive the adjoint model code
directly from the model code. In this case, the ad-
joint model code can either be built from the tangent

Ž .linear model code Spitz, 1995 or it can be con-
structed based upon the use of Lagrange multipliers.
The second method was adopted in this study and a
full description and an application to a simple prey–

Ž .predator model can be found in Lawson et al. 1995 .
This technique provides a straightforward way of
writing code and avoids the inconsistency that can
occur from the discretization of the adjoint continu-
ous equations. The optimization procedure uses the
subroutine N1QN3 from Gilbert and Lemarechal´
Ž .1989 , which is based upon a limited memory
quasi-Newton method.

2.2. Ecosystem model

The ecosystem model in our study is the nitrogen
budget model of the upper ocean pelagic ecosystem

Ž .developed by Fasham et al. 1990 . This model
simulates the seasonal cycle of the ecosystem within
the upper ocean mixed-layer. A system of seven
coupled ordinary differential equations controls the
time rate of change of the ecosystem constituents

Ž . Ž .which include: nitrate NO , ammonium NH ,3 4
Ž . Ž .dissolved organic nitrogen DON , detritus D , bac-

Ž . Ž . Ž .teria B , phytoplankton P and zooplankton Z .
All model constituents are expressed in terms of
mmol N my3. The model numerical scheme is a
fourth-order Runge-Kutta with a 2-h time step.
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The model is forced by a prescribed seasonally
Ž .varying mixed-layer depth MLD . Within the

mixed-layer, the ecosystem is considered homoge-
nous. The change in MLD over time:
dMLD

sh t 1Ž . Ž .
d t

is calculated from the monthly mean mixed-layer
Ž .depth at Bermuda using the Levitus 1982 data set.

This change is further used to determine the rate of
entrainment of water from greater depths into the
mixed-layer:

hq t smax h t ,0 2Ž . Ž . Ž .Ž .
Finally, diffusive mixing between the mixed-layer
and the deep ocean is parameterized by the inclusion
of a vertical flux rate, m.
The time rate of change in the phytoplankton

Ž .nitrogen pool P is:

dP mqhq tŽ .
s 1yg s PyG ym Py PŽ .1 1 1d t MLD

3Ž .

where s is the specific light and nutrient limited
growth rate, g is the phytoplankton exudation rate,1
G is the zooplankton grazing rate, and m is the1 1
specific mortality rate. The last term in the equation
represents the volumetric dilution of the phytoplank-
ton concentration caused by the deepening of the

qŽ .mixed-layer, h t , and diffusive mixing, m.
The specific light and nutrient limited growth rate

is defined as:

ssJ Q 4Ž .I

where J and Q are the light- and nutrient-limitedI
growth terms, respectively. The nutrient-limited
growth term is given by:

QsQ qQ 5Ž .1 2

where Q is the nitrate uptake:1

NO eyC NH4
3Q s 6Ž .1 K qNO1 3

and Q is the ammonium uptake:2

NH4Q s 7Ž .2 K qNH2 4

and whereC is a parameterization of the strength of
ammonium inhibition of nitrate uptake observed by

Ž .Walsh and Dugdale 1972 , and K and K are the1 2
half-saturation constants for nitrate and ammonium
uptake, respectively.
The light-dependent growth rate takes into ac-

count the diel light cycle and is defined as:

1 V a I eyŽ kwqk c P . zMLD p 0J s d zHI 2MLD 2 2 yŽk qk P . z0 w cV qa I e( Ž .ž /p 0

8Ž .

where V is the maximum growth rate and a is thep
initial slope of the primary production versus light
curve. The amount of incident photosynthetically

Ž .available radiance PAR at the surface of the ocean,
I , is attenuated by the mean PAR absorption coeffi-0
cient for pure water, k , and the chlorophyll-specificw
mean PAR absorption coefficient, k .c
The time rate of change of the zooplankton nitro-

Ž .gen pool Z is:

dZ
sb G qb G qb G ym Z1 1 2 2 3 3 2d t

h tŽ .
ym Zy Z 9Ž .5 MLD

where b , b , b are the assimilation efficiencies1 2 3
and G , G , G are the grazing rates for the phyto-1 2 3
plankton, bacteria, and detritus, respectively, and m2
and m are the specific excretion and specific mortal-5
ity rates for zooplankton, respectively. The forms for
the zooplankton grazing rates are given as:

gZp P 21G s 10Ž .1 2 2 2Ž .K p Pq p Bq p D q p P q p B q p D3 1 2 3 1 2 3

gZp B22G s 11Ž .2 2 2 2Ž .K p Pq p Bq p D q p P q p B q p D3 1 2 3 1 2 3

gZp D2
3G s 12Ž .3 2 2 2Ž .K p Pq p Bq p D q p P q p B q p D3 1 2 3 1 2 3

where g is the maximum grazing rate, K is the3
half-saturation coefficient for grazing and p , p1 2
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and p denote the zooplankton food preference for3
phytoplankton, bacteria, and detritus, respectively.
The time rate of change in the nitrogen pool of

Ž .active bacteria B is:

dB mqhq tŽ .
sU qU yG ym By B 13Ž .1 2 2 3d t MLD

where U is the uptake of DON:1

V BDONbU s 14Ž .1 K qSqDON4

U is the uptake of NH :2 4

V BSbU s 15Ž .2 K qSqDON4

m is the bacteria-specific excretion rate, V is the3 b
maximum bacterial uptake rate, and K is the half-4
saturation coefficient for uptake. The partitioning
between bacterial uptake of DON and NH is con-4
trolled by the amount of total bacterial nitrogenous
substrate:

Ssmin NH ,hDON 16Ž . Ž .4

where h is the ratio of bacterial uptake of NH to4
bacterial uptake of DON, as derived in Fasham et al.
Ž .1990 .

Ž .The change in the detritus nitrogen pool D over
time is:
dD

s 1yb G q 1yb G yb G ym DŽ . Ž .1 1 2 2 3 3 4d t
mqhq t qVŽ .

qm Py D 17Ž .1 MLD
where the first three terms parameterize the egestion
of food material ingested by the zooplankton, m is4
the rate of detritus breakdown by bacterial enzymes
and non-bacterial mediated processes, and V is the
sinking rate of the detritus material.

Ž .The change in the nitrate pool NO over time:3

dNO mqhq tŽ .3 syJ Q Pq N yNOŽ .I 1 bottom 3d t MLD
18Ž .

where the flux of nitrate into the mixed-layer is
controlled by the parameterized diffusive mixing flux,
m, the rate of entrainment of deep ocean water,

qŽ .h t , and the difference between the nitrate concen-
tration within the mixed-layer and that observed at
just below the mixed-layer, N .bottom

Ž .The time rate of change of the ammonium NH :4
dNH4 syJ Q PyU qm BI 2 2 3d t

q em q 1yV m ZŽ .Ž .2 5

mqhq tŽ .
y NH 19Ž .4MLD

where V is the fraction of the remineralized zoo-
plankton grazing mortality, and e is the ammonium
fraction of the zooplankton excretion.
The change in the dissolved organic nitrogen

Ž .DON over time:

dDON
sg J QPqm Dq 1ye m ZyUŽ .1 I 4 2 1d t

mqhq tŽ .
y DON 20Ž .

MLD
where all the terms have been previously defined.

2.3. Cost function and data aÕailability

The assimilation is performed by minimizing a
cost function which measures the distance between
observations and model equivalents to the observa-
tions. In this study, the cost function is defined in a
least square manner as:

1 TJs d ya W d ya 21Ž . Ž . Ž .Ý i ,n i ,n i i ,n i ,n2 i ,n

where d and a are the data and model equivalents to
the data, respectively, i refers to the data types and n
refers to the observation time. The model equivalent
to the data were linearly interpolated to the time of
the collection and converted to the same units as the
observations. The conversion factors are described
further in this section. The weighting matrices W arei
theoretically the inverse of the observation error
covariance matrices. By assuming that errors in the
data are uncorrelated and have equal variance, the
weight matrices can be rewritten as:

Wsw I 22Ž .i i
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where w is a positive scalar. In practice, w takesi i
into account the relative magnitude of the various
data types and the quality of the data sets. In this
study, w accounts for the differences in the relativei
magnitude observed in the time-average of each data
type and is defined as:

max dž /jw s 23Ž .i d i

where d is the time-average of the observation i andi
Ž .max d is the maximum of the time-average of thej

Ž .assimilated observations Lawson et al., 1996 .
Data with a large uncertainty in the measurement

and the conversion factor into nitrogen units are,
however, assigned with a weight reduced by a factor

Ž .10 with respect to the value given by Eq. 23 . Those
data are described later in this section.
The data used in the assimilation process are

equivalent to the observations taken at BATS and
consist of nitrate, chlorophyll-a and particulate or-
ganic nitrogen concentrations, bacteria cell counts,
phytoplankton primary production rates, and bacte-
rial production rates. Sampling at this site began in
October 1988 and occurs at about monthly intervals.
A full description of the BATS observations can be

Ž .found in Michaels and Knap 1996 and a list of the
data collected is shown in Table 1.

The data from BATS are depth-dependent obser-
vations collected from the surface down to greater
than 250 m in depth. However, the ecosystem model
simulates the ecosystem concentrations and pro-
cesses as homogeneous within the mixed-layer. Each
BATS data profile was vertically integrated from the
surface to the seasonally varying mixed-layer depth
Ž .MLD to make the BATS data compatible with the
ecosystem model solutions.
The actual data used in the assimilation proce-

dure, such as bacterial cell counts or chlorophyll-a
concentration, are not prognostically determined in

Ž .the Fasham et al. 1990 model. In order to make the
model output compatible with the BATS observa-
tions a number of assumptions, data conversions and
diagnostic equations were needed.
The observed phytoplankton chlorophyll-a data

were assumed to be a good representation of the
amount of phytoplankton biomass. The model phyto-
plankton nitrogen concentrations were then con-

Ž y3 .verted from the model units mmol N m to
Ž y3 .chlorophyll concentration mg chlorophyll-a m

using an assumed constant chlorophyll-a to nitrogen
Ž .y1ratio of 1.59 g chlorophyll-a mol N , which was

Žcalculated using a constant carbon to nitrogen C:N;
.mol:mol ratio of 6.625 and a carbon to chlorophyll-a

Ž .g:g ratio of 50.
The bacteria data derived from BATS were

recorded as cell counts per unit mass and the bacte-

Table 1
Ž .Type of data collected at US JGOFS Bermuda Atlantic Time-Series Study BATS station between 1988 and 1993

Value measured Measurement method Units

Salinity CTD, salinometer n.d.
Temperature CTD 8C

y3Density Calculated kg m
y1Dissolved oxygen Winkler titration mmol kg
y1Total CO Coulometric technique mmol kg2
y1Nitrate Autoanalyzer mmol kg
y1Nitrite Autoanalyzer mmol kg
y1Phosphate Autoanalyzer mmol kg
y1Silicate Autoanalyzer mmol kg

y1Chlorophyll-a Fluorometer and HPLC mg kg
y1Phaeopigments Fluorometer and HPLC mg kg
y1Bacterioplankton Enumeration wrDAPI cell kg
y1PON Elemental analyzer mg kg
y1POC Elemental analyzer mg kg

14 y3 y1Primary production C uptake method mg C m d
3 y1 y1Bacterial production H-thymidine uptake method pmol l h
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rial production rates were measured in terms of
w3 x Ž3 .H-methyl thymidine H-TdR uptake rates. Con-
versions were needed in order to make the simulated
data comparable to the observed data. However,

Ž .Carlson et al. 1996 pointed out that there is no
universally accepted conversion factor for conver-
sion of bacterial abundance to carbon biomass or
3H-TdR uptake to bacterial carbon production. Carl-

Ž .son et al. 1996 also pointed out that bacteria
biomass estimates are approximately 10% overesti-
mated due to the inclusion of prochlorophyte cells in
the total bacteria cell counts, while Sieracki et al.
Ž .1995 found that 10–25% of the counted cells are
prochlorophytes and not heterotrophic bacteria. Even
with these difficulties, we assumed a constant carbon

Ž .to nitrogen C:N ratio of 4 and a bacteria cell
biomass of 20 fg C celly1 to calculate a conversion

y3 Ž 8 y1.y1factor of 0.048 mmol N m 10 cells kg .
Considering the uncertainties in conversion factor
and measurement, the bacteria cell counts were given

a reduced weight, i.e. one order of magnitude smaller,
in the cost function and bacterial production was not
assimilated.
In order to equate the particulate organic nitrogen

Ž .PON measurements from BATS to the model prog-
nostic variables, a diagnostic equation for PON was
written as:

PONsPqZqBqD 24Ž .
where P, Z, B and D are in terms of mmol N my3.
The model phytoplankton net primary production
rate which is compared to the BATS phytoplankton
primary production rate is defined as:

PPs 1yg s P 25Ž . Ž .1

where s is the specific light and nutrient limited
growth rate and g is the phytoplankton exudation1

Ž .rate. A C:N mol:mol ratio of 6.625 was also used
to convert the simulated phytoplankton nitrogen up-
take estimates to carbon uptake estimates. The con-

Table 2
Ž .Fasham et al. 1990 model parameters

Parameter Symbol Value Dimension
y1Light attenuation due to water k 0.04 mw

y1Cross-thermocline mixing rate m 0.1 m d
y1Phytoplankton maximum growth rate V 2.9 dp

y2 y1 y1Ž .Initial slope of the PrI curve a 0.025 w m d
y3Half-saturation for phytoplankton NO uptake K 0.5 mmol N m3 1
y3Half-saturation for phytoplankton NH uptake K 0.5 mmol N m4 2

y1Phytoplankton specific mortality rate m 0.09 d1
2 y1Ž .Light attenuation by chlorophyll-a k 0.03 m mmol Nc

Phytoplankton exudation rate g 5% none1
y1Ž .NH inhibition parameter C 1.5 mmol N4

y1Zooplankton maximum growth rate g 1.0 d
Zooplankton assimilation efficiencies b , b , b 75% none1 2 3

y1Zooplankton specific excretion rate m 0.1 d2
y1Zooplankton specific mortality rate m 0.05 d5

y3Zooplankton half-saturation for ingestion K 1.0 mmol N m3
Detritus fraction for zooplankton mortality V 33% none
NH fraction of zooplankton excretion e 75% none4

y1Bacteria maximum growth rate V 2.0 db
Bacteria-specific excretion rate m 0.05 dy13

y1Detrital breakdown rate m 0.05 d4
y3Bacteria half-saturation rate for uptake K 0.5 mmol N m4

NH rDON uptake ratio h 0.6 none4
y1Detritus sinking rate V 1.0 m d

Zooplankton food preference for phytoplankton, p , p , p 1.0, 1.0,1.0 none1 2 3
bacteria, detritus

y3Nitrate concentration below zsMDL N 2.0 mmol N mbottom
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version assumes that the phytoplankton were always
in a state of balanced growth.

3. Twin experiment

In order to systematically test the ability of the
assimilation technique to recover parameters, numer-

Žical experiments with simulated data twin experi-
.ments were carried out. The first issue to be ad-

dressed with the twin experiments is the feasibility
of using sparse observations such as obtained by

ŽBATS to estimate the various model parameters see
.Table 2 and model the ecosystem annual cycle.
Ž .Matear 1995 argued that more than half of the

Ž .Fasham et al. 1990 model parameters are highly

Ž .Fig. 2. Model results using Fasham et al. 1990 parameter values. The crosses represent the time of BATS observations used in the twin
experiment assimilation process.



( )Y.H. Spitz et al.rJournal of Marine Systems 16 1998 51–68 59

correlated and found a large uncertainty in the opti-
mal parameters. However, his conclusions were based
upon assimilation of observations from OWS Papa.
There is no evidence that the inability to estimate
individual parameters resides in their correlation, or
is due to an inconsistency between the model and
observations, or is due to the lack of information on
some of the ecosystem components. Twin experi-
ments using model-generated observations can ad-

dress this dilemma for a given density of observa-
tions which mimics the frequency of BATS data
collection. The twin experiment data set is guaran-
teed to be consistent with the model, free of mea-
surement error, and expressed in the same units as
the model results.
The twin experiment was designed as follows.

Ž .The seasonally varying mixed-layer depth MLD
was taken from climatological data for Bermuda to

Ž . Ž . Ž .Fig. 3. Model results using Fasham et al. 1990 parameter values solid line and first-guess parameter values dotted line .
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Ž .Fig. 4. Recovery of the Fasham et al. 1990 model parameters shown as the difference between the estimated model parameters and the true
values normalized to the true value.

Table 3
Model parameters, true values and ratio of recovered to true value for the twin experiment
Parameter Symbol True value Recoveredrtrue value
Light attenuation due to water k 0.04 1.0002794w
Cross-thermocline mixing rate m 0.1 1.0000571
Phytoplankton maximum growth rate V 2.9 1.0005883p
Initial slope of the PrI curve a 0.025 1.0006963
Half-saturation for phytoplankton NO uptake K 0.5 1.00051643 1
Half-saturation for phytoplankton NH uptake K 0.5 1.00066724 2
Phytoplankton specific mortality rate m 0.09 1.0000011
Light attenuation by chlorophyll-a k 0.04 1.0003339c
Phytoplankton exudation rate g 5% 0.999878151
NH inhibition parameter C 1.5 1.00045174
Zooplankton maximum growth rate g 1.0 1.0015351
Zooplankton assimilation efficiencies b , b , b 75% 0.99940588, 0.99942592, 0.998683151 2 3
Zooplankton specific excretion rate m 0.1 0.819324212
Zooplankton specific mortality rate m 0.05 1.36106835
Zooplankton half-saturation for ingestion K 1.0 1.00100113
Detritus fraction for zooplankton mortality V 33% 0.73452456
NH fraction of zooplankton excretion e 75% 0.926728954
Bacteria maximum growth rate V 2.0 0.99822359b
Bacteria specific excretion rate m 0.05 1.00005853
Detrital breakdown rate m 0.05 0.999996564
Bacteria half-saturation rate for uptake K 0.5 0.997941594
NH rDON uptake ratio h 0.6 1.00013004
Detritus sinking rate V 1.0 1.0000254
Zooplankton food preference for phytoplankton p 1.0 0.545425761
Zooplankton food preference for bacteria p 1.0 0.545291312
Zooplankton food preference for detritus p 1.0 0.546631903
Nitrate concentration below zsMDL N 2.0 1.0000013bottom
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force the model with an observed annual cycle. The
simulated observations were generated using the
above ecosystem model with parameter values de-

Ž . Ž .fined in Fasham et al. 1990 see Table 2 . Fasham
Ž .et al. 1990 calibrated the model to reproduce the

observations at Hydrostation S northwest of BATS.
The model was run until it reached a steady annual
cycle, which took 1 year of model time. The data
were then taken from the following year of results.
The simulated concentrations were subsampled to
obtain observations at sampling times corresponding
to the BATS observations from 1988 through 1992.
Five years of sampling time were then folded into 1
year in order to increase the density of data since the
time of data collection for any given month varies
from year to year. The simulated observations are
shown in Fig. 2. For the twin experiment, the param-
eter first guess was taken as 60% of the ‘true’ values
Ž .Table 2 . The model was run for 1 year when it
reached a steady annual cycle, and the data assimila-
tion was done on the following year. This removes
any effect that the initial conditions may have had on
the recovery of the parameters. The second-year
model results generated with the first-guess parame-
ters are shown in Fig. 3. The main difference be-
tween the observations and the first-guess results
resides in the absence of a well-defined spring bloom
in the first-guess concentrations.

Assimilation of the simulated data resulted in the
Žrecovery of most of the 29 parameters Fig. 4, and

.Table 3 except for the zooplankton-specific excre-
Ž .tion and mortality rates m and m , the zooplank-2 5

Ž .ton food preferences p , p , p , the fraction of the1 2 3
Ž .remineralized zooplankton grazing mortality V ,

and the ammonium fraction of the zooplankton ex-
Ž .cretion e . Note that while those parameters were

not recovered, each term in the equations containing
Ž Ž . Ž . Ž ..those parameters Eqs. 9 , 19 and 20 were

correctly estimated. For instance, the sum of the
zooplankton-specific excretion m and mortality m2 5

Ž Ž ..rates Eq. 9 was equal to 0.15 when using either
Ž .the true values Table 2 or the recovered values

Ž .Table 3 . The same result occurred with the em q2
Ž .1yV m term in the ammonium equation, and the5
Ž .1ye m term in the DON equation. This showed2
that the parameters involved in each of the terms
mentioned are not independent and cannot be indi-
vidually estimated.
The parameters which are involved in the model

forcing terms were first recovered in order of relative
importance of their contributions to the overall model
solution. For example, the concentration of nitrate
just below the mixed layer, N , which controlsbottom
the injection rate of nutrients was first estimated. A
signature of these recoveries is shown in the initial
fast decrease of the value of the cost function and the

Ž .Fig. 5. Value of the cost function and the norm of its gradient as a function of the number of iterations using the Fasham et al. 1990 model.
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Ž .norm of its gradient Fig. 5 . A second rapid de-
crease in the value of the cost function occurred
around 2500 iterations. This corresponds to the re-
covery of various source and sink terms except for
the ones controlling the bacterial source terms, a
potentially important process within the microbial
loop. The maximum bacterial uptake rate V and theb
half-saturation coefficient for the uptake K are4
indeed the last parameters to be recovered. A similar
recovery pattern was found, even in the best case,
when the data set consisted of the model results for
the seven ecosystem components at every time step
Ž .not shown . This suggests that the concentration
observations contain only a weak signature of the
processes related to the microbial loop. In other
words, the recovery of the parameters associated
with these processes is possible only after the model
result errors due to the governing processes have
been minimized.

Ž . Ž . Ž .After inspection of Eqs. 9 , 19 and 20 , the
terms involving the non-recovered parameters were
rewritten. The number of parameters was then re-
duced and assimilation of the simulated data led to

Ž .the recovery of all the new parameters Fig. 6 .
These changes did not alter the model dynamics, but
did reduce the number of parameters which needed
to be recovered. Specifically, m qm was replaced2 5
by m , which parameterized the loss of zooplanktonn

due to the combination of mortality and excretion.
Ž .The term em q 1yV m in the ammonium equa-2 5

tion was replaced by d m , which parameterizedNH n4
the flow of zooplankton loss into the ammonium

Ž .pool. The term 1ye m was replaced by d m ,2 DON n
which parameterized the flow of zooplankton loss
into the DON pool. The final simplified terms in-
volved the zooplankton grazing terms, which were
rewritten as:

gZP 2
G s1 2 2 2K Pqp Bqp D qP qp B qp DŽ .3 1 2 1 2

26Ž .

gZp B21G s2 2 2 2K Pqp Bqp D qP qp B qp DŽ .3 1 2 1 2

27Ž .

gZp D2
2G s3 2 2 2K Pqp Bqp D qP qp B qp DŽ .3 1 2 1 2

28Ž .

where p , p now denote the zooplankton prefer-1 2
ence for bacteria and detritus relative to the prefer-
ence for phytoplankton.
Simplification of the model did not necessarily

lead to a reduction in the number of iterations re-

Fig. 6. Same as Fig. 4, except for the simplified model.
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quired to recover the model parameters. While sim-
plification of the model terms did not have an effect
on the model results, it did have a non-negligible
effect on the path of the recovery. Part of this was
due to the differences in the first-guess model pa-
rameters and consequently in the first-guess model
results. For example, the first-guess zooplankton
concentration goes to zero in the modified model

twin experiment. The other initial guess model re-
sults in the second experiment were also further

Ž .apart from the modeled observations Fig. 7 than
that from the first experiment. Another reason for the
difference in the two recovery experiments is that the
path of the model recovery is sensitive to the first
guess of the model. The change in the first-guess
parameters caused a large variability in the parame-

Ž . Ž . Ž .Fig. 7. Model results using Fasham et al. 1990 parameter values solid line and first-guess parameter values dotted line for the modified
model twin experiment.
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Fig. 8. Same as Fig. 5, except for the simplified model.

ter excursion during the first 1000 iterations of the
assimilation process for the modified model twin

Ž .experiment Fig. 8 . These differences between the
two twin experiments also contributed to the higher
number of iterations required for full recovery in the
modified versus original model twin experiment.
Note that while the number of iterations is high in
both experiments, it could potentially be reduced by
choosing different initial parameter guesses, by
adding a penalty term in the cost function which
takes into account a priori information on the param-

Ž .eters Matear, 1995 , or by assimilating either more
Žor different types of observations Tziperman et al.,

.1992; Lawson et al., 1996 .

4. BATS data

In the previous section, we showed that all the
parameters of the simplified model can be estimated
using the same frequency and type of data as the
observations from BATS between 1988 and 1993. In
principle, the annual cycle of the ecosystem should
then be modeled by estimating the model parameters
using the actual BATS observations. The BATS data
were obtained by vertically integrating the depth-de-
pendent observations from the surface down to the
prescribed MLD.

The first guess for the parameters was taken from
Ž .the coefficients used in Fasham et al. 1990 . The

BATS data and first-guess model results are shown
in Fig. 9. While the simulated nitrate time series
compares well with the BATS data, all other model
constituents compare poorly. For example, the simu-
lated phytoplankton bloom occurs in late April and
has a much larger amplitude than that observed in
the BATS data. Also, the simulated nitrate increases
faster in winter and spring than the observed one,
and there is a peak in modeled bacteria, but no
significant variation in the observed bacteria concen-
trations.
An attempt was made to estimate a realistic set of

model parameters which could lead to a better fit to
the actual data from BATS. However, the data as-
similation failed to fit the model results to the obser-
vations. Consequently, the value of the cost function
Ž .not shown could not be significantly reduced from
that obtained from the first guess. A comparison
between the model results generated with the esti-
mated parameters and the BATS data is shown in
Fig. 10. Similar results were obtained by Fasham and

Ž .Evans 1995 when they used the Fasham et al.
Ž .1990 model and a non-linear optimization tech-
nique to model the ecosystem at the JGOFS station
at 478N 208W.
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Ž . Ž .Fig. 9. BATS observations between 1988 and 1993 crosses and first guess model results solid line .

Based upon the results from the twin experiments,
we suspect that the ecosystem model does not ade-
quately represent the ecosystem at BATS, and some

of the model assumptions must be reconsidered. For
instance, the primary forcing in the model is the rate
of input of nitrate at the base of the mixed layer.
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Ž . Ž .Fig. 10. BATS Observation between 1988 and 1993 crosses and results from data assimilation solid line .

Ž .Fasham et al. 1990 assumed that the nitrate concen-
tration below the mixed layer is constant over time
and uniform with depth. The vertical profiles of

nitrate observations at BATS show clearly that the
nitrate concentration is approximately constant to
100 m deep and then varies linearly with depth.
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Ž .Hurtt and Armstrong 1996 reformulated the nitrate
input at the base of the mixed layer to account for
the observed increase in nitrate concentration with
depth. Similar reformulation was adapted by Fasham

Ž .and Evans 1995 when they estimated the model
parameters by assimilating the observations from the
1989 JGOFS North Atlantic Bloom Experiment. An-
other assumption in the model is that the chloro-
phyll-a to nitrogen ratio in the phytoplankton is
assumed constant with time. This ratio is used to
convert the phytoplankton nitrogen biomass into the
measured chlorophyll concentrations. Phytoplankton
cells can alter their chlorophyll-a concentrations so
as to maximize the amount of energy absorbed uti-
lized for photosynthesis. As a result, during periods
of low light, such as winter, chlorophyll-a to nitro-
gen ratios are high, and during periods of high light,
such as summer, chlorophyll-a to nitrogen ratios are
low. This seasonal variability in the chlorophyll-a to
nitrogen ratio was used by Hurtt and Armstrong
Ž .1996 and was shown to improve the Fasham et al.
Ž .1990 model with respect to BATS data.
Another source of the failure in the data assimila-

tion can come from the assumptions made in con-
verting the model simulated data into observations.
For example, PON measurements at BATS measure
the total particulate fraction of organic nitrogen in
the water. However, much of this particulate material
is known to be refractory and is not directly coupled
to the seasonal cycle of the ecosystem. On the other
hand, the model assumes that PON is composed
entirely of phytoplankton, bacteria, zooplankton and
detritus. Finally, the model was forced with a data
set which contains interannual variabilities. The 5-
year observations were indeed folded into 1 year to
create the data set used in the assimilation process.
This interannual variability might be a source of
difficulty to estimate the annual cycle since the
variability in the physical forcing, the mixed-layer
depth, is not taken into account.

5. Summary

Based upon the results of the twin experiments,
we can conclude that the type and frequency of the
BATS observations are adequate to estimate the

Ž .parameters in the Fasham et al. 1990 model and to

simulate the annual cycle of the upper ocean ecosys-
tem. The BATS observations were, however, not
directly modeled, but were diagnostically obtained
from the model results. We were also able show that
some of the parameters were not independent. By
addressing these dependencies, we simplified the
model by reducing the number of parameters. In this
case, all of the parameters were recovered, whereas
dependencies between the model parameters pre-
vented full parameter recovery.
These results demonstrate the utility of twin ex-

periments to assess a priori the degree of model
complexity that can be resolved with a given set of
observations. Twin experiments are optimal since
they are not confronted with measurement error and
inconsistencies between the observations and the
model. The addition of error to the observations can

Žonly hinder the rate of parameter recovery Lawson
.et al., 1995 . Additional observations may then be

required to circumvent the problems caused by the
measurement errors.
The results obtained from assimilating the actual

BATS observations present clear evidence that the
Ž .assumptions used in the Fasham et al. 1990 model

need to be carefully reconsidered in order to model
the pelagic ecosystem at BATS. In future work, we

Ž .plan to modify the Fasham et al. 1990 model with
respect to BATS data.
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